
Level density for deformations of the Gaussian orthogonal ensemble

A. C. Bertuola, J. X. de Carvalho, M. S. Hussein, M. P. Pato, and A. J. Sargeant
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil

sReceived 6 October 2004; published 17 March 2005d

Formulas are derived for the average level density of deformed, or transition, Gaussian orthogonal random
matrix ensembles. After some general considerations about Gaussian ensembles, we derive formulas for the
average level density forsid the transition from the Gaussian orthogonal ensemblesGOEd to the Poisson
ensemble andsii d the transition from the GOE tom GOEs.
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I. INTRODUCTION

Deformed random matrix ensembles were introduced by
Rosenzweig and Porterf1,2g to classify the conservation of
electronic spin and orbital angular momentum in the spectra
of complex atoms. Many varieties of deformed ensembles
have since been constructed. Recent reviews of deformed
ensemblessthey are also called transition ensemblesd can be
found in Refs.f3,4g. Earlier results on deformed ensembles
were reviewed in Ref.f5g. Among the applications they have
found, we mention the breaking of time-reversal invariance
f6g and the breaking of symmetriesf7g.

In this paper, we are concerned with the level density for
deformed Gaussian orthogonal random matrix ensembles.
Although the level density of the standard random matrix
ensembles is not directly related to the physical many-
particle level density, it is essential to the proper unfolding of
fluctuation measuresf8g. Unfolding is a transformation
which leaves sequences of energy levels with a constant av-
erage density. Normally, experimental energy levelsand the
energy levels obtained from random matrix theory are un-
folded swhich removes the secular energy dependencesd be-
fore fluctuation measures for both are calculated and com-
pared. While the level densities of most random matrix
ensembles are different, the bheavior of the fluctuation mea-
sures of a wide class of ensembles is the same and hence
denominated universal. For instance, each of the non-
Gaussian ensembles studied in Ref.f9g is shown to have a
characteristic average level density, however after unfolding,
the nearest-neighbor spacing distributions and number vari-
ances of all are found to be identical to those of the standard
Gaussian random matrix ensemblesf10g.

In the following, we derive formulas for the level density
of two deformations of the Gaussian orthogonal ensemble
sGOEd. The first describes a transition from the GOE to an
ensemble with Poisson fluctuation statistics, that is, from the
GOE to an ensemble of diagonal matrices whose elements
are independently Gaussian distributedf11,12g. Such random
matrix models are of interest to the analysis of experimental
data f13g and of dynamical modelsf14g whose fluctuation
properties are intermediate between Poisson and GOE. The
second deformation describes the transition from the GOE to
m GOEs, that is, from the GOE to a block diagonal matrix
with m blocks each of which is a GOEf15–17g. If the blocks
are labeled by quantum numbers such as angular momentum
f1g or isospin f18g, then the transition ensemble classifies

their conservation or nonconservation. Them GOE to GOE
transition is also relevant to the analysis of symmetry break-
ing in quartz blocksf19–21g.

Our method extends that of Wignerf22g, who showed, by
assuming that terms containing patterns of unlinked binary
associations dominate the averages of the traces of powers of
matrices, that the level density for certain random matrix
ensembles could be simply expressed as a Fourier of trans-
form ssee also Sec. III D of Ref.f5gd. Previous results for the
level density of deformed GOEs have been derived using
Stieltjes transform methodsf23,24g. These methods are in
fact general enough to treat deformations of, and interpola-
tions between, any class of matrix ensemble. However, the
formulas obtained in the present paper have the advantage
that they are explicit and simple to evaluate numerically.
Other methods for calculating the level densityf25,26g are
restricted to deformations of the Gaussian unitary ensemble
sGUEd.

II. INTERPOLATING GAUSSIAN ENSEMBLES

The joint probability distribution of the matrix elements
of a matrix,H, for an interpolating Gaussian ensemble may
be expressed as

PsH,A,Bd = Z−1sA,Bdexpf− sAtrH2 + BtrH1
2dg, s1d

whereZ is a normalization factor and trH denotes the trace
of H. The structure of the matrixH1 is chosen in such a way
that it defines a subspace ofH. The parametersA and B
define thesenergyd scale and degree of deformation. When
B→0, the joint distribution becomes

PsH,A,0d = Z−1sA,0dexps− AtrH2d. s2d

If we assume thatH is real symmetric, then the variances are
given by

Hij
2 =

1 + di j

4A
, s3d

so that the limitB→0 defines the GOE. WhenB→`, the
elements ofH1 vanish andH is projected onto a sparse ma-
trix, H0, whose elements are on the complementary subspace
of H1. Therefore, the random matrices generated by Eq.s1d
are the sum of two terms,
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H = H0 + H1, s4d

with the variances of the matrix elements ofH0 given by the
right-hand side of Eq.s3d and those ofH1 given by

H1i j
2 =

1 + di j

4sA + Bd
. s5d

This shows that whenB goes from zero to infinity, the en-
semble undergoes a transition from GOE to the Gaussian
ensemble of sparse matrices defined by the choice of the
structure ofH1 or, equivalently, ofH0. It is also instructive to
introduce the parameter

a = s1 + B/Ad−1/2, s6d

which measures the relative strength ofH1 andH0. The tran-
sition from a=0 to a=1 corresponds to the transition from
B=` to B=0.

III. LEVEL DENSITY FOR THE GOE

We now proceed to give a derivation of the semicircle
law, valid for the GOE, which is equivalent to Wigner’s for
the ensemble of random sign symmetric matricesf22g. In
general, the average level densitysALD d may be written as a
Fourier transform,

rsEd =
1

2p
E

−`

`

dkFskde−ikE, s7d

where

Fskd =E
−`

`

dErsEdeikE s8d

=o
n=0

`
sikdn

n!
E

−`

`

dErsEdEn. s9d

Let Ek denote the eigenvalues of anN3N matrix H, which
satisfies Eqs.s2d and s3d. From the exact expression,

rsEd =
1

N
o
k=1

N

dsE − Ekd, s10d

for the ALD, one obtains the following connection between
the moments of the eigenvalue distribution and the moments
of the matrix elements,

En ; E
−`

`

dErsEdEn =
1

N
trHn. s11d

Substituting Eq.s11d into Eq. s9d, we obtain

Fskd =
1

N
o
n=0

`
sikdn

n!
trHn. s12d

It is also useful to note that by differentiating Eq.s8d, the
moments of the eigenvalue distribution can be expressed as
derivatives of the Fourier transform of the ALD evaluated at
zero, that is,

En = i−nFsnds0d, s13d

whereFsnds0d=fdnF /dkngk=0.
For large matrices,N@1, the average of the trace is domi-

nated by the terms in which matrix indices may be con-
tracted in such a way that we are left withs=n/2 pairs of
matrix elements. This means that we can write

trHn . CsN
s+1s2s, s14d

where we have introduced the notation

s2 =
1

4A
s15d

for the variance of the off-diagonal matrix elements. The
factor Cs counts the number of contractions that leads to
pairs. We observe that in a contraction,s−1 indices are
eliminated ands+1 remain, which explains the power ofN
in the above expression and allows us to write

Cs =
1

s

s2sd!
ss− 1d!ss+ 1d!

, s16d

where the binomial factor counts the number of wayss+1
indices can be extracted out of 2s ones. The factor is then
divided bys, that is, the number of wayss−1 indices can be
eliminated without changing the contraction.

Substituting Eq.s14d in Eq. s12d, we find that the Fourier
transform of the average density is given by

F1sa,kd .
1

ka/2o
s=0

`
s− dsska/2d2s+1

s!ss+ 1d!
=

1

ka/2
J1skad, s17d

whereJ1sxd is a first-order Bessel function and

a = ÎN/A. s18d

Using the formula

s1 − x2d1/2 =
1

2
E

−`

`

y−1J1syde−ixydy, s19d

the Fourier transform in Eq.s7d may be evaluated to obtain
the semicircle law,

r1sa,Ed = 5 1

pa2/2
Îa2 − E2, uEu ø a,

0, uEu . a,

s20d

where the radius of the semicircle is given by Eq.s18d. The
cumulative level densitysCLDd, xsEd, is defined by

xsEd =E
0

E

rsE8ddE8, s21d

which for the semicircle law is found to be
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x1sa,Ed =5
− 1/2, E , a,

EÎa2 − E2 + a2 arcsinsE/ad
pa2 , uEu ø a,

1/2, E . a.

s22d

The average number of levels up to energyE is given in
terms of the CLD byNfxsEd−xs−`dg.

IV. THE TRANSITION GOE TO POISSON

Before considering the transition from Poisson to GOE,
we derive a formula for the ALD for a more general case.

A. Level density for H0+H1

The trace of thenth power of Eq.s4d can be written as

trHn = trsH0 + H1dn = o
l=0

n
n!

l!sn − ld!
trH0

l H1
n−l . s23d

If H0 andH1 are statistically independent, we can write

trH0
l H1

n−l = o
j

E0j
l k j uH1

n−lu jl s24d

=E0
l trH1

n−l , s25d

where E0j and u jl are defined by the eigenvalue equation
H0u jl=E0ju jl and E0

l denotes thelth moment of the eigen-
value distribution ofH0. Equationss23d ands25d allow us to
write fcf. Eq. s11dg

1

N
trHn < E

−`

`

dE0r0sE0dE
−`

`

dE1r1sE1dsE0 + E1dn, s26d

wherer0 andr1 are the average level densities correspond-
ing toH0 andH1, respectively. Equations26d is only approxi-
mate because in resumming the binomial series we have kept
linked as well as unlinked binary associations ofH0 andH1.
In the following subsection, we show that for the case of the
transition GOE-Poisson the resulting discrepancy in the ALD
is small. We also show how to correct for this discrepancy.

Substituting Eq.s26d into Eq. s12d, we find

Fskd =E
−`

`

dE0r0sE0dE
−`

`

dE1r1sE1deiksE0+E1d = F0skdF1skd,

s27d

where F0 and F1 are the Fourier transforms ofr0 and r1,
respectively. The ALD is obtained by substituting Eq.s27d
into Eq. s7d. Another representation is obtained by noting
that since Eq.s27d is a product of Fourier transforms, the
ALD of H is given by the convolution of the average level
densities ofH0 andH1,

rsEd =E
−`

`

dE8r0sE8dr1sE − E8d. s28d

The only assumption required to derive Eqs.s27d ands28d is
that the matrix elements ofH0 and H1 be statistically inde-
pendent.

B. Level density for the transition GOE to Poisson

To specialize the results of the last subsection to the tran-
sition GOE-Poisson,H0 is chosen to be the diagonal matrix
H0i j =E0idi j whose eigenvalues,E0i, are independent random
variables with Gaussian distribution

r0sEd =ÎA

p
e−AE2

. s29d

The variance ofH0 is thus

H0i j
2 =

di j

2A
= a2 di j

2N
. s30d

We chooseH1 to be a diagonal-less matrix whose matrix
elements are independent Gaussian variables with zero mean
and variances

H1i j
2 = a21 − di j

4A
= a2a21 − di j

4N
. s31d

The ALD for H0 alone is given by Eq.s29d and the CLD,
Eq. s21d, by

x0sEd =
1

2
erfsÎAEd. s32d

The Fourier transform of Eq.s29d is

F0skd = e−k2/4A. s33d

Note that for fixeda, A→` asN→`, so that

r0sEd →
N→`

dsEd. s34d

The ALD for H1 alone is given byr1saa,Ed, that is, by
the semicircle lawfsee Eq.s20dg with the radius modified
sa→aad in accordance with Eq.s31d for the variance ofH1

fcf. Eq.s3dg. Its Fourier transform isF1saa,kd fsee Eq.s17dg.
The ALD for H1 is given by the semicircle law in spite of the
missing diagonal because off-diagonal matrix elements
dominatesfor N large enoughd.

Using Eqs.s27d and s7d, the ALD which interpolates be-
tween the Gaussian and the semicircle asa varies between 0
and 1 is then found to be

rasEd =
1

2p
E

−`

`

dkF0skdF1saa,kde−ikE s35d

=
2

p

ÎA

l
E

0

` dx

x
e−x2/4l2

J1sxdcos
ÎAxE

l
, s36d

where we have changed the integration variable tox=aka
and introduced the parameter

l = aÎN. s37d

In Fig. 1, we compare Eq.s36d for rasEd with histograms
constructed by numerically diagonalizing random matrices
for several values ofa ssee figure caption for detailsd. It is
seen that good agreement is obtained, there being, however,
a small discrepancy in the transition region which is espe-
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cially apparent in the graph fora=0.05. The CLD, Eq.s21d,
may be expressed using Eq.s36d as

xasEd =
2

p
E

0

` dx

x2 e−x2/4l2
J1sxdsin

ÎAxE

l
. s38d

This equation provides a more accurate manner of unfolding
fluctuation measures than the polynomial unfolding used in
Ref. f27g. Equations38d is plotted for several values ofa in
Fig. 2.

The ALD may be expressed alternatively using the con-
volution formula, Eq.s28d. In particular, whenN→` for

fixed a anda, we find from Eq.s28d and Eq.s34d that

rasEd →
N→`

r1saa,Ed. s39d

For finite N, Eq. s28d yields

rasEd =
2ÎN

p3/2a3a2E
−aa+E

aa+E

e−NE82/a2Îa2a2 − sE − E8d2dE.

s40d

It it clear from these explicit formulas that the transition
parameter isa2N, as was already argued in the original paper
of Rosenzweig and Porterf1g. The model described in this
section can be cast in the form

H = H0 +
l

NcH1, s41d

with c=1/2, by modifying the definitions of the variances,
Eqs. s31d. Referencef26g considered the statistics of en-
sembles of the form of Eq.s41d for arbitraryc. In particular,
the asymptotic behavior of the ALD asN→` depends criti-
cally on c, Eq. s39d being valid only for the special casec
=1/2.

Equations36d may be improved by comparing the result-
ing lowest moments of the eigenvalue distribution with the
average trace of the corresponding powers of the Hamil-
tonian. Considering the latter first, we have

trH2 = trH0
2 + trH1

2 = NE0
2 + C1N

2a2a2

4N
=

N

4A
sl2 + 2d

s42d

and

trH4 = trH0
4 + 4trH0

2H1
2 + trH1

4

= NE0
4 + 4E0

2C1N
2a2a2

4N
+ C2N

3 a4a4

16N2

=
N

8A2sl4 + 4l2 + 6d. s43d

Inserting Eq.s36d into Eq. s13d for the moments of the ei-
genvalue distribution, we find that

E2 =
1

4A8
sl82 + 2d, s44d

E4 =
1

8A82sl84 + 6l82 + 6d. s45d

Note that the coefficient ofl82 in Eq. s45d is 6. This is a
result of the use of Eq.s26d, which included linked binary
associations ofH0 andH1. Equations11d demands that

E2 =
1

N
trH2, s46d

FIG. 1. Graph ofrasEd for several values ofa with N=1000.
The calculations were performed withA=N/4 for which the radius
of the Wigner semicircle isa=2. The solid lines were calculated
using Eq.s36d and the dotted histograms by numerically diagonal-
izing an ensemble of 100 matrices.

FIG. 2. Graph ofxasEd calculated using Eq.s38d for several
values ofa with N=1000. The calculations were performed with
A=N/4, for which the radius of the Wigner semicircle isa=2.
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E4 =
1

N
trH4. s47d

Solving Eqs.s46d and s47d for A8 and l8, we see that Eq.
s36d will give the second and fourth moments of the eigen-
values distribution correctly if we make the substitution

1

A
→ 1

A8
=

1

A
S1 + l2F1 −Î1 +

4

l2GD , s48d

l2 → l82 = l2

Î1 +
4

l2

1 + l2F1 −Î1 +
4

l2G
. s49d

In Fig. 3, we show the improvement to the ALD obtained by
using Eqs.s48d ands49d in Eq. s36d for the worst case of Fig.
1 sa=0.05d. We see that the modified formula gives the ALD
essentially exactly.

In Fig. 4, we show the peak value of the density of states
as a function ofl ssee figure captiond. We see that both the
modified and unmodified versions of Eq.s36d agree at the
l=0 limit. We also see that both versions of Eq.s36d reach
the N→` limit fEq. s39dg at roughly the same value of
lsl<6d. However, the two versions deviate from each other
in the transition region, the largest difference occurring
aroundl<1.5 sa<0.05 forN=1000d. Also shown for com-
parison is the interpolation formula for the ALD of Persson
and Åbergf28g,

ra
PA =

N1/2

4aN1/2 + 7N−1.5a . s50d

V. THE TRANSITION GOE TO m GOES

We now calculate the ALD for the transition from the
GOE to a superposition ofm GOEs. To proceed, we again
consider an ensemble of matrices of the form of Eq.s4d.
Now H0 is a block diagonal matrix consisting ofm blocks
whose dimensions areMi, i =1,2,… ,m, with oi=1

m Mi =N.
The elements ofH0 have zero mean and variances given by
Eq. s3d. We defineH1 to be zero whereH0 is nonzero and
elsewhere its elements have zero mean and variances given
by Eq. s5d.

To obtain a formula for the ALD, we note that

trH2 = o
j ,k=1

N

Hjk
2 s51d

=N2o
i=1

m
Mi

N
si

2 s52d

with

si
2 =

1

4A
FMi

N
+ a2S1 −

Mi

N
DG . s53d

Considering a single line ofH, thesi
2 consist of a term which

is the product of the variance of a single nonzero element of
H0 with the probability for being in blocki plus a term which
is the product of the variance of a single nonzero element of
H1 with the probability for being outside blocki. In the sum
in Eq. s52d, the si

2 are weighted with the fraction of lines
which find themselves in blocki.

For the fourth power ofH, we find

trH4 = 2 o
j ,k,l=1

N

Hjk
2 Hjl

2 s54d

FIG. 3. Graph ofrasEd showing the improvement obtained by
demanding that the second and fourth moments of the eigenvalue
distribution be exact fora=0.05 andN=1000. The solid lines result
from using Eq.s36d and the dot-dashed lines from using the same
equation modified in accordance with Eqs.s48d and s49d. The dot-
ted histograms were obtained by numerically diagonalizing an en-
semble of 100 matrices.

FIG. 4. Graph of the peak values of the densityras0d, Eq. s36d,
as a function of the transition parameterl, Eq. s37d. For compari-
son we also show the limiting casesr0s0d, Eq. s29d, andr1saa,0d,
Eq. s39d, as well as an interpolation formula given by Persson and
Åberg f28g ra

PA, Eq. s50d. Finally, we showras0d calculated using
Eq. s36d modified in accordance with Eqs.s48d and s49d.
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=2o
j=1

N Fo
k=1

N

Hjk
2G2

s55d

=2N3o
i=1

m
Mi

N
si

4. s56d

Although the authors were unable to obtain an equation
analogous to Eq.s55d for higher powers ofH, Eqs.s52d and
s56d strongly suggest that

trH2s . CsN
s+1o

i=1

m
Mi

N
si

2s s57d

for largeN.
Substituting Eq.s57d into Eq. s12d and again using Eqs.

s17d, s7d, ands19d, we obtain

rsEd = o
i=1

m
Mi

N
r1sai,Ed, s58d

wherer1 is given by Eq.s20d and

ai = a2FMi

N
+ a2S1 −

Mi

N
DG s59d

=
1

A
FMi + l2S1 −

Mi

N
DG . s60d

From Eq.s58d, it follows that the CLD, Eq.s21d, is given by

xsEd = o
i=1

m
Mi

N
x1sai,Ed, s61d

with x1 given by Eq.s22d.
In Fig. 5, we compare Eq.s58d. for the ALD with numeri-

cal simulations for several values of thea ssee figure caption
for detailsd and excellent agreement is obtained.

VI. CONCLUSION

In conclusion, by assuming that terms containing patterns
of unlinked binary associations dominate the averages of the

traces of powers of matrices, we have derived formulas for
the average level density for two deformations of the Gauss-
ian orthogonal ensemble. The first describes the transition
from the Gaussian orthogonal ensemble to the Poisson en-
semble and the second the transition from the GOE tom
GOEs. The formulas obtained are in excellent agreemeent
with numerical simulations.

ACKNOWLEDGMENTS

This work was carried out with support from FAPESP, the
CNPq, and the Instituto de Milênio de Informação
Quântica—MCT.

f1g N. Rosenzweig and C. E. Porter, Phys. Rev.120, 1698s1960d,
reprinted in Ref.f2g.

f2g C. E. Porter,Statistical Theory of Spectra: FluctuationssAca-
demic, New York, 1965d.

f3g V. K. B. Kota, Phys. Rep.347, 223 s2001d.
f4g T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller, Phys.

Rep. 299, 189 s1998d.
f5g J. F. T. A. Brody, J. B. French, P. A. Mello, A. Pandey, and S.

S. M. Wong, Rev. Mod. Phys.53, 385 s1981d.
f6g M. S. Hussein and M. P. Pato, Phys. Rev. Lett.80, 1003

s1998d.
f7g M. S. Hussein and M. P. Pato, Phys. Rev. Lett.84, 3783

s2000d.
f8g J. B. French, V. K. B. Kota, A. Pandey, and S. Tomsovic, Ann.

Phys.sN.Y.d 181, 198 s1988d.
f9g S. Ghosh, A. Pandey, S. Puri, and R. Saha, Phys. Rev. E67,

025201sRd s2003d.
f10g O. Bohigas, inLes Houches LII: Chaos and Quantum Physics

sElsevier, Amsterdam, 1991d, pp. 87–199.
f11g T. Guhr and H. A. Weidenmuller, Ann. Phys.sN.Y.d 193, 472

s1989d.
f12g M. P. Pato, C. A. Nunes, C. L. Lima, M. S. Hussein, and Y.

Alhassid, Phys. Rev. C49, 2919s1994d.
f13g A. Y. Abul-Magd and M. H. Simbel, J. Phys. G24, 579

s1998d.
f14g M. Matsuo, T. Døssing, E. Vigezzi, and S. Åberg, Nucl. Phys.

A 620, 296 s1997d.
f15g T. Guhr and H. A. Weidenmuller, Ann. Phys.sN.Y.d 199, 412

FIG. 5. Graph ofrasEd illustrating the transition 3 GOEs to
GOE. The three blocks have sizeM1=50, M2=400, andM3=550.
The densities fora=0, 0.7, and 1.0 are shown. The calculations
were performed withA=N/4, for which the radius of the Wigner
semicircle isa=2. The solid lines were calculated using Eq.s58d
and the dotted histograms by numerically diagonalizing an en-
semble of 100 matrices.

BERTUOLA et al. PHYSICAL REVIEW E 71, 036117s2005d

036117-6



s1990d.
f16g M. S. Hussein and M. P. Pato, Phys. Rev. Lett.70, 1089

s1993d.
f17g M. S. Hussein and M. P. Pato, Phys. Rev. C47, 2401s1993d.
f18g S. Åberg, A. Heine, G. E. Mitchell, and A. Richter, Phys. Lett.

B 598, 42 s2004d.
f19g C. Ellegaard, T. Guhr, K. Lindemann, J. Nygård, and M. Ox-

borrow, Phys. Rev. Lett.77, 4918s1996d.
f20g A. Abd El-Hady, A. Y. Abul-Magd, and M. H. Simbel, J. Phys.

A 35, 2361s2002d.
f21g K. Schaadt, A. P. B. Tufaile, and C. Ellegaard, Phys. Rev. E

67, 026213s2003d.
f22g E. P. Wigner, Ann. Math.62, 548s1955d, reprinted in Ref.f2g.
f23g L. A. Pastur, Teor. Mat. Fiz.10, 102 s1972d, fTheor. Math.

Phys. 10, 67 s1972dg.
f24g A. Pandey, Ann. Phys.sN.Y.d 134, 110 s1981d.
f25g T. Guhr and A. Müller-Groeling, J. Math. Phys.38, 1870

s1997d.
f26g H. Kunz and B. Shapiro, Phys. Rev. E58, 400 s1998d.
f27g A. J. Sargeant, M. S. Hussein, M. P. Pato, and M. Ueda, Phys.

Rev. C 61, 011302s2000d.
f28g P. Persson and S. Åberg, Phys. Rev. E52, 148 s1995d.

LEVEL DENSITY FOR DEFORMATIONS OF THE… PHYSICAL REVIEW E 71, 036117s2005d

036117-7


