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Level density for deformations of the Gaussian orthogonal ensemble
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Formulas are derived for the average level density of deformed, or transition, Gaussian orthogonal random
matrix ensembles. After some general considerations about Gaussian ensembles, we derive formulas for the
average level density fofi) the transition from the Gaussian orthogonal ensent@G®F) to the Poisson
ensemble andii) the transition from the GOE tm GOEs.
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|. INTRODUCTION their conservation or nonconservation. TineGOE to GOE

Deformed random matrix ensembles were introduced b);ran_sition is also relevant to the analysis of symmetry break-
Rosenzweig and PortéL,2] to classify the conservation of N in quartz blockg19-21]. _
electronic spin and orbital angular momentum in the spectra Our method extends that of Wign22], who showed, by
of complex atoms. Many varieties of deformed ensemble@ssuming that terms containing patterns of unlinked binary
have since been constructed. Recent reviews of deforme@Bsociations dominate the averages of the traces of powers of
ensemblesthey are also called transition ensemblesn be  matrices, that the level density for certain random matrix
found in Refs[3,4]. Earlier results on deformed ensemblesensembles could be simply expressed as a Fourier of trans-
were reviewed in Ref5]. Among the applications they have form (see also Sec. Ill D of Ref5]). Previous results for the
found, we mention the breaking of time-reversal invariancédevel density of deformed GOEs have been derived using
[6] and the breaking of symmetri¢g]. Stieltjes transform method®3,24. These methods are in

In this paper, we are concerned with the level density foifact general enough to treat deformations of, and interpola-
deformed Gaussian orthogonal random matrix ensemble§ons between, any class of matrix ensemble. However, the
Although the level density of the standard random matrixformulas obtained in the present paper have the advantage
ensembles is not directly related to the physical manythat they are explicit and simple to evaluate numerically.
particle level density, it is essential to the proper unfolding ofOther methods for calculating the level dendiBp,2¢ are
fluctuation measure¢8]. Unfolding is a transformation restricted to deformations of the Gaussian unitary ensemble
which leaves sequences of energy levels with a constant a(GUE).
erage density. Normally, experimental energy leaid the
energy Ie\{els obtained from random matrix theory are un- Il INTERPOLATING GAUSSIAN ENSEMBLES
folded (which removes the secular energy dependenices
fore fluctuation measures for both are calculated and com- The joint probability distribution of the matrix elements
pared. While the level densities of most random matrixof a matrix,H, for an interpolating Gaussian ensemble may
ensembles are different, the bheavior of the fluctuation megbe expressed as
sures of a wide class of ensembles is the same and hence
denominated universal. For instance, each of the non- P(H,A.B)=Z YA B)exd~ (ArH? + BrH)], (1)

Gaussian ensembles studied in Réf is shown to have a whereZ is a normalization factor and # denotes the trace

characteristic average level density, however after unfolding f H. The structure of the matriM, is chosen in such a way
the nearest-neighbor spacing distributions and number var&at it defines a subspace bf. The parameters and B

ances of all are found to be identical to those of the standard . .
Gaussian random matrix ensembfas] efine the(energy scale and degree of deformation. When
: B—0, the joint distribution becomes

In the following, we derive formulas for the level density
of two deformations of the Gaussian orthogonal ensemble P(H.A 0 = Z XA 0)exn(— AtrH? 2
(GOB). The first describes a transition from the GOE to an (H.A0) (A Ojexp ): @
ensemble with Poisson fluctuation statistics, that is, from théf we assume thail is real symmetric, then the variances are
GOE to an ensemble of diagonal matrices whose elementgiven by
are independently Gaussian distribuféd,12. Such random

matrix models are of interest to the analysis of experimental H2 = 1+4; 3)
data[13] and of dynamical modelg14] whose fluctuation PToga

properties are intermediate between Poisson and GOE. The

second deformation describes the transition from the GOE teo that the limitB— 0 defines the GOE. WheB — o, the

m GOEs, that is, from the GOE to a block diagonal matrixelements ofH, vanish andH is projected onto a sparse ma-
with m blocks each of which is a GOR5-17. If the blocks  trix, Hy, whose elements are on the complementary subspace
are labeled by quantum numbers such as angular momentuef H,. Therefore, the random matrices generated by (EQ.

[1] or isospin[18], then the transition ensemble classifiesare the sum of two terms,
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H=Hy+H,, (4) EN=i""F"(0), (13)

with the variances of the matrix elementstf given by the whereF™(0) =[d"F/dK"]o.

right-hand side of Eq(3) and those oH, given by For large matriced\> 1, the average of the trace is domi-

—  1+6 nated b_y the terms in which matrix ind@ces may_be con-
1ij = —1_4(A+ B)’ (5 tract_ed in such a way that we are left W|$I:Fn_/2 pairs of
matrix elements. This means that we can write
This shows that wheB goes from zero to infinity, the en- o
semble undergoes a transition from GOE to the Gaussian trH" = CN*"16%*, (14
ensemble of sparse matrices defined by the choice of the
structure ofH, or, equivalently, oH,. It is also instructive to  Where we have introduced the notation
introduce the parameter

1
a=(1+B/A)2 (6) o’ = n (15)

which measures the relative strengthHhfandH,. The tran- . . )
sition from =0 to a=1 corresponds to the transition from for the variance of the off-diagonal matrix elements. The
B=« to B=0. factor C5 counts the number of contractions that leads to

pairs. We observe that in a contractiosi; 1 indices are
eliminated ands+1 remain, which explains the power bff
lIl. LEVEL DENSITY FOR THE GOE in the above expression and allows us to write

We now proceed to give a derivation of the semicircle

law, valid for the GOE, which is equivalent to Wigner's for = EL (16)
the ensemble of random sign symmetric matrif28]. In s(s—1)!(s+1)!
general, the average level dendifl.D) may be written as a ) )
Fourier transform, where the binomial factor counts the number of waysl
indices can be extracted out o ®nes. The factor is then
_1 - _ikE divided bys, that is, the number of ways-1 indices can be
p(E)= 277[_30 dkF(kje™, (@) eliminated without changing the contraction.
Substituting Eq(14) in Eqg. (12), we find that the Fourier
where transform of the average density is given by
Fk) = J dEp(E)e"* (8) 1 o (-)ka2>t 1
o Fi(a,k) = = Ji(ka), (1
1@k kalzz, S+ k@ (17
o (k)" [~ is a first- i
-3 (nl) J dEp(E)E™. 9) whereJ;(x) is a first-order Bessel function and
n=0 ' J-w JR—
. ) ] a=+N/A. (18)
Let E, denote the eigenvalues of & N matrix H, which
satisfies Egs(2) and(3). From the exact expression, Using the formula
1 N
—=N'"SE_E) 1(” .
p(E) = ngl SE-E), (10 (1 _X2)1/2: Ef y 1J1(y)e vy, (19)

for the ALD, one obtains the following connection between i ) .
the moments of the eigenvalue distribution and the momentd1® Fourier transform in Eq7) may be evaluated to obtain
of the matrix elements, the semicircle law,

— * 11— 1 —
EN= dEp(E)E" = =trH". 11 la?-E?, |E|<a,
| dmee=2 1 I = 0

Substituting Eq(11) into Eq. (9), we obtain 0, [E|>a,

1.3, (ik)"— where the radius of the semicircle is given by Et8). The
F(k) = NE —ltrH“. (12 cumulative level densityCLD), x(E), is defined by
n=0 I
E
It is also useful to note that by differentiating E®), the X(E) :J o(E")dE, (21)
moments of the eigenvalue distribution can be expressed as 0

derivatives of the Fourier transform of the ALD evaluated at
zero, that is, which for the semicircle law is found to be
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- 1/2, E < a-y
EVaZ-E%+a?arcsir(E/a
y(aE) =1 " ACSINER) 1| <,
ma
1/2, E>a.

(22

The average number of levels up to enegyis given in
terms of the CLD byN[X(E) —x(==)].

IV. THE TRANSITION GOE TO POISSON

Before considering the transition from Poisson to GOE,
we derive a formula for the ALD for a more general case.

A. Level density for Hg+H4
The trace of theith power of Eq.(4) can be written as

n
n!
trH" =tr(Hy+ Hy)" =
(Ho+Hy) gll(n—l)!

If Hy andH, are statistically independent, we can write

trHyHY . (23

trHGHT ™ = 3 o (GIHTTi) (24)
J
=Ep trH], (25)

where Ey; and |j) are defined by the eigenvalue equation
Holi)=Eqlj) and E|, denotes thdth moment of the eigen-

value distribution oH,. Equationg23) and(25) allow us to
write [cf. Eq. (11)]

1_ o0 o0
Ntan”f dEoPo(Eo)J dEip1(E)(Eo+ Ey)", (26)

-0
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B. Level density for the transition GOE to Poisson

To specialize the results of the last subsection to the tran-
sition GOE-PoissonH, is chosen to be the diagonal matrix
Hoij =Egi & whose eigenvalue&;, are independent random
variables with Gaussian distribution

A
po(E) = \ﬁe'AEz.
a

(29
The variance oH, is thus
— 5 S
Hai = —- =a?—L. 30
%7 2A " T 2N 20

We chooseH; to be a diagonal-less matrix whose matrix
elements are independent Gaussian variables with zero mean
and variances

1-6

:
=y

1-5;
2a2 ] .
4N

The ALD for Hy alone is given by Eq29) and the CLD,
Eq. (22), by

HZ, = o? (31)

1
Xo(E) = Eerf((AE). (32)
The Fourier transform of Eq29) is
Fo(k) = 74, (33)
Note that for fixeda, A— o asN— o, so that
po(E)N—> 8(E). (34)

The ALD for H; alone is given byp;(aa,E), that is, by

where p, and p, are the average level densities correspondtn€ semicircle lawsee Eq.(20)] with the radius modified

ing toHy andH,, respectively. Equatiof®6) is only approxi-

a— aa) in accordance with Eq31) for the variance oH;

mate because in resumming the binomial series we have kef- EQ-(3)]. Its Fourier transform if,(ea, k) [see Eq(17)].

linked as well as unlinked binary associationsHyfandH;.

he ALD for H, is given by the semicircle law in spite of the

In the following subsection, we show that for the case of themissing diagonal because off-diagonal matrix elements
transition GOE-Poisson the resulting discrepancy in the ALDdominate(for N large enough

is small. We also show how to correct for this discrepancy.

Substituting Eq(26) into Eq. (12), we find

F(k):f dEoPo(Eo)f dE;py(Ep) e Eo™®) = Fy(k)F4(K),

(27)

where Fy and F; are the Fourier transforms @f; and p;,
respectively. The ALD is obtained by substituting Eg7)

into Eq. (7). Another representation is obtained by noting

Using Egs.(27) and(7), the ALD which interpolates be-
tween the Gaussian and the semicirclevasries between 0
and 1 is then found to be

1(” )
pulB)= - f dKFo(K)F4(ca, k)& kE (35)
2 VA [ dx [AXE
=232 ZEedia?y (wcos———, (36)
T N 0 X A

that since Eq(27) is a pI’OdUCt of Fourier tl’anSfOI’mS, the where we have Changed the integration variablextarka
ALD of H is giVen by the convolution of the average level and introduced the parameter

densities ofHy andH;,

p(E)=f dE' po(E")p1(E-E). (28)

The only assumption required to derive E(&7) and(28) is
that the matrix elements dfi, and H, be statistically inde-
pendent.

A= a\r’ﬂ. (37)

In Fig. 1, we compare Eq.36) for p,(E) with histograms
constructed by numerically diagonalizing random matrices
for several values ok (see figure caption for detajlslt is

seen that good agreement is obtained, there being, however,
a small discrepancy in the transition region which is espe-
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13 r ' ; ' fixed @ anda, we find from Eq.(28) and Eq.(34) that
s 0=005 | ] Pu(E) — pi(aaB). (39)
14 | ]
13 ] For finite N, Eq. (28) yields
12 [ ]
1 ] N featE
I 2\VN j T N e e Eys—
%‘10_— E E)z———— e—NE /a | 2a2_ E-E 2dE
5 of A ] PalE) 312332 e Va ( )
S 8 Ff ]
S 3 a=0.1 1 # ] (40)
g i i It it clear from these explicit formulas that the transition
al 402 m : parameter is¥’N, as was already argued in the original paper
3 [ T AN ] of Rosenzweig and Porté¢l]. The model described in this
2F j ’ ] section can be cast in the form
1L o= ]
ok ; N N
-1 05 1 H=Hy+ WHl, (41)

FIG. 1. Graph ofp,(E) for several values ofr with N=1000.  with c=1/2, by modifying the definitions of the variances,
The calculations were performed witk=N/4 for which the radius  Eqgs. (31). Reference[26] considered the statistics of en-
of the Wigner semicircle is=2. The solid lines were calculated sembles of the form of Ed41) for arbitraryc. In particular,
using Eq.(36) and the dotted histograms by numerically diagonal-the asymptotic behavior of the ALD &— « depends criti-

izing an ensemble of 100 matrices. cally onc, Eq. (39) being valid only for the special case
=1/2.
cially apparent in the graph far=0.05. The CLD, Eq(21), Equation(36) may be improved by comparing the result-
may be expressed using E§6) as ing lowest moments of the eigenvalue distribution with the
_ average trace of the corresponding powers of the Hamil-
2 (“dx |AXE tonian. Considering the latter first, we have
x,(E) == J eI ()sin . (39) g
m™Jo X A o o azaz N
. , . . trH? = trHg + trH; = NEG + CN?—— = —(\? +2)
This equation provides a more accurate manner of unfolding AN 4A
fluctuation measures than the polynomial unfolding used in (42)
Ref.[27]. Equation(38) is plotted for several values af in
Fig. 2. and
The ALD may be expressed alternatively using the con- - o
volution formula, Eq.(28). In particular, whenN—c for trH* = trHg + 4trHGH? + trH?
2,2 4.4
—7 — al a'a
0.6 . . = NE& + 4E2C,N2 5 + C,N°
os | 0 o0~1 AN 2 16N2
| e N
04 | ot i 1 =—(\*+4\*+6). (43
03| - Wi / | 8A
— o=0.5 ”l, //
0.2 - oo i/ 1 Inserting Eq.(36) into Eq. (13) for the moments of the ei-
01 f —-— 0=0 " . genvalue distribution, we find that
o~ Z,
2 oor Y .
© orl ] =1 v2ep (44)
-0.1 /"'I ,I,! 4A, 1
0.2t P .
Sooah
03 | // /1/! i 1
_ | / ! ‘, i Ez )\/4+ 6)\’2"' 6). 45
0.4 . /i an2 ) (45
0.5 2 .
06 s s \ Note that the coefficient ok’? in Eq. (45) is 6. This is a
-1 0.5 E‘; 05 T result of the use of Eq(26), which included linked binary
a

associations oH, andH;. Equation(11) demands that

FIG. 2. Graph ofx,(E) calculated using Eq(38) for several
values ofa with N=1000. The calculations were performed with
A=N/4, for which the radius of the Wigner semicircleds 2.

1——
E?= —trH?, (46)
N
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FIG. 4. Graph of the peak values of the dengify0), Eq. (36),
fsa function of the transition parameierEq. (37). For compari-
son we also show the limiting caspg0), Eq. (29), andp4(aa,0),

Eq. (39), as well as an interpolation formula given by Persson and

FIG. 3. Graph ofp,(E) showing the improvement obtained by
demanding that the second and fourth moments of the eigenval
distribution be exact for=0.05 and\N=21000. The solid lines result
from using Eq.(36) and the dot-dashed lines from using the sameA PA - .

. N . berg[28 , Eq. (50). Finally, we showp,(0) calculated usin
equation modified in accordance with E¢48) and (49). The dot- = (gé) rgofzﬁfied ?n(ac)cordancye with E ng)( a)nd(49) 9
ted histograms were obtained by numerically diagonalizing an en- a- q )
semble of 100 matrices.

V. THE TRANSITION GOE TO m GOES

= 1— We now calculate the ALD for the transition from the
E'= N”H : (47 GOEto a superposition ah GOEs. To proceed, we again
consider an ensemble of matrices of the form of K.
Solving Egs.(46) and (47) for A’ and\’, we see that Eq. Now H, is a block diagonal matrix consisting of blocks
(36) will give the second and fourth moments of the eigen-whose dimensions ar#;, i=1,2,...,m, with =2 M;=N.
values distribution correctly if we make the substitution The elements oHy have zero mean and variances given by

Eq. (3). We defineH; to be zero wheréd, is nonzero and
1 _ i’ = l(l +)\2{1 -\/1 +i2D (48) elsewhere its elements have zero mean and variances given
A A A A by Eq. (5).
To obtain a formula for the ALD, we note that
1+ 4 A
V=72 trH2= > Hj (51)
A2 s \'2=)\2 . (49) 1%1 K
) 4
1+N[1-1/1+ 2 m o
=N?2 Jof (52)
In Fig. 3, we show the improvement to the ALD obtained by i-=1 N
using Eqs(48) and(49) in Eq. (36) for the worst case of Fig. with
1 («=0.05. We see that the modified formula gives the ALD
essentially exactly. _L M M
In Fig. 4, we show the peak value of the density of states oiz' 4A| N tafl N/ | (53

as a function o (see figure caption We see that both the o _ . _ ]
modified and unmodified versions of E€@6) agree at the Considering a single line ¢4, thes? consist of a term which
A=0 limit. We also see that both versions of E@6) reach is the product of the variance of a single nonzero element of
the N—co limit [Eq. (39)] at roughly the same value of Ho with the probability fo.r being in blpckplus a term which
M\ ~6). However, the two versions deviate from each otherS the product of the variance of a single nonzero element of
in the transition region, the largest difference occurring™1 With the probability for being outside blodk In the sum
around\ = 1.5 (¢~ 0.05 forN=1000. Also shown for com- in Ed. (52), the o? are weighted with the fraction of lines

parison is the interpolation formula for the ALD of PerssonWhich find themselves in block

and Aberg[28] For the fourth power oH, we find
N
N2 o Tz
A . trH*=2 X HiH’ (54)
a 4aNl/2+ 7N—l.5a (50) e IS
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N N o 2 '
=23 | S HE (55) o AN 1
=Lk 14 - 3 -
m I #
M- 12 L _0=0.7 T 4
=2N%D, W'ai“. (56) S
i=1 1 L . i
Although the authors were unable to obtain an equationE I o=t
analogous to Eq55) for higher powers oH, Egs.(52) and % 08 | |
(56) strongly suggest that 06 L i
m M. A
trH® = CNS1Y W‘a%" (57) 04/ 1
i=1
0.2
for large N.

Substituting Eq(57) into Eq. (12) and again using Eqs. o LI | ‘ ‘ l L
(17), (7), and(19), we obtain - 05 EO 05 !
m &

M; ) . i
p(E) = E —p1(a,E), (58) FIG. 5. Graph ofp,(E) illustrating the transition 3 GOEs to

i-1 N GOE. The three blocks have si&é; =50, M,=400, andM3;=550.

The densities fore=0, 0.7, and 1.0 are shown. The calculations
were performed withA=N/4, for which the radius of the Wigner
M; semicircle isa=2. The solid lines were calculated using E§8)
1‘“ (59 and the dotted histograms by numerically diagonalizing an en-
semble of 100 matrices.

wherep; is given by Eq.(20) and

ai:az|:%+a2

1
==| M, +>\2<1——') . (60) _ .
A N traces of powers of matrices, we have derived formulas for

. L the average level density for two deformations of the Gauss-
From Eq.(58), it follows that the CLD, Eq(21), is given by ian orthogonal ensemble. The first describes the transition

™M from the Gaussian orthogonal ensemble to the Poisson en-
X(E)=2>, Wlxl(airE)- (61)  semble and the second the transition from the GOHnto
i=1 GOEs. The formulas obtained are in excellent agreemeent
with x; given by Eq.(22). with numerical simulations.

In Fig. 5, we compare Eq58). for the ALD with numeri-
cal simulations for several values of thgsee figure caption
for detaily and excellent agreement is obtained. ACKNOWLEDGMENTS
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